skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Zhidong Su"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Convolutional Neural Networks (CNN) are becomin deeper and deeper. It is challenging to deploy the networks directly to embedded devices be- cause they may have different computational capacities. When deploying CNNs, the trade-off between the two objectives: accuracy and inference speed, should be considered. NSGA-II (Non-dominated Sorting Genetic Algorithm II) algorithm is a multi-objective optimiza- tion algorithm with good performance. The network architecture has a significant influence on the accuracy and inference time. In this paper, we proposed a con- volutional neural network optimization method using a modified NSGA-II algorithm to optimize the network architecture. The NSGA-II algorithm is employed to generate the Pareto front set for a specific convolutional neural network, which can be utilized as a guideline for the deployment of the network in embedded devices. The modified NSGA-II algorithm can help speed up the training process. The experimental results show that the modified NSGA-II algorithm can achieve similar results as the original NSGA-II algorithm with respect to our specific task and saves 46.20% of the original training time. 
    more » « less